[32] Loranty, M.M., Davydov, S.P., Kropp**, H., Alexander, H.D., Mack, M.C., Natali, S.M., and Zimov, N.S., 2018. Vegetation indices do not capture forest cover dynamics in upland Siberian larch forests. Remote Sensing, 10(11), 1686.

[31] Loranty, M.M., Abbott, B., Blok, D.,Douglas, T.A., Epstein, H.E., Forbes, B., Jones, B., Kholodov, A.K., Kropp, H., Malhotra, A., Mamet, S., Myers-Smith, I., Natali, S.M., O’Donnell, J., Phoenix, G., Rocha, A.V., Sonnentag, O., Tape, K., Walker, D.A. 2018. Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions Biogeosciences, 15(17), 5287–5313.

[30] Alexander, H.D., Natali, S.M., Loranty, M.M., Ludwig, S., Spektor, V., Davydov, S.P., Zimov, N.S., and Mack, M.C. 2018. Impacts of increased soil burn severity on larch forest regeneration on permafrost soils in far northeastern Siberia.  Forest Ecology and Management. 4166, 144-153

[29] Loranty, M.M., Berner, L.T., Taber, E.D., Kropp, H., Natali, S.M., Alexander, H.D., Davydov, S.P. and Zimov, N.S., 2018. Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia. PloS one13(3), p.e0194014.

[28]Lyu, H., McColl, K.A., Li, X., Derksen, C., Berg, A., Black, T.A., Euskirchen, E., Loranty, M.M., Pulliainen, J., Rautiainen, K. and Rowlandson, T., 2018. Validation of the SMAP freeze/thaw product using categorical triple collocation. Remote Sensing of Environment205, pp.329-337.

[27] Webb, E.E., Heard, K., Natali, S.M., Bunn, A., Alexander, H.D., Berner, L.T., Kholodov, A.L., Loranty, M.M., Schade, J., Spektor, V., and Zimov, N.S., 2017. Variability in above and belowground carbon stocks in a Siberian larch watershed.  Biogeosciences. 14 (18), 4279-4294. doi: 10.5194/bg-14-4279-2017

[26] Mamet, S.D., Chun, K.P., Kershaw, G.G.L., Loranty, M.M., and Kershaw, G.P., 2017. Linear thaw and non-linear areal loss of permafrost: reconciling climatic and non-climatic effects on palsa dynamics in the western Northwest Territories. 2017. Permafrost and Perigalcial Processes. doi: 10.1002/ppp.1951

[25] Derksen, C., Xu, X., Dunbar, R.S., Colliander, A., Kim, Y., Kimball, J., Black, A., Euskirchen, E., Langlois, A., Loranty, M.M., Marsh, P. Rautianen, T., Roy, A., Royer, A., Stephens, J., 2017. Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sensing of Environment 194, 48-62.

[24] Kropp**, H., Loranty, M.M., Alexander, H.D., Berner, L.T., Natali, S.M., and Spawn, S.A., 2017. Environmental constraints on transpiration and stomatal conductance in a Siberian Arctic boreal forest. Journal of Geophysical Research – Biogeosciences, 122, 487–497

[23] Epstein, H.E., Bhatt, U.S., Raynolds, M.K., Walker, D.A., Forbes, B.C., Macias-Fauria, M., Loranty, M.M., Phoenix, G., and Bjerke, J. 2016: Tundra Greenness [in Arctic Report Card 2016],

[22] Loranty, M.M., Liberman-Cribbin*, W., Berner, L.T., Natali, S.M., Goetz, S.J., Alexander, H.D. and Kholodov, A.L., 2016. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environmental Research Letters11(9), 095008.

[21] Curasi, S.R., Loranty, M.M. and Natali, S.M. 2016. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape. Environmental Research Letters11(4), 045002.

[20] Berner, L. T., H. D. Alexander, M. M. Loranty, P. Ganzlin, M. C. Mack, S. P. Davydov, and S. J. Goetz. 2015. Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska, Forest Ecol Manag, 337(C), 110–118, doi:10.1016/j.foreco.2014.10.027.

[19] Loranty, M. M., S. M. Natali, L. T. Berner, S. J. Goetz, R. M. Holmes, S. P. Davydov, N. S. Zimov, and S. A. Zimov (2014), Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire, Journal of Geophysical Research Biogeosciences, 119(11), 2144–2154, doi:10.1002/2014jg002730.

[18] Loranty, M.M., L.T. Berner, S.J. Goetz, Y. Jin, and J.T. Randerson. 2014. Vegetation controls northern high latitude snow-albedo feedback: observations and CMIP5 model simulations. Global Change Biology. 20(2), 594-606. doi:10.1111/gcb.12391

[17] Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz, 2013, Shifts in Arctic vegetation and associated feedbacks under climate change, Nature Climate Change, doi:10.1038/nclimate1858.

[16] Epstein, H.E., D.A. Walker et al and 21 others including M.M. Loranty, 2012, Vegetation [in Arctic Report Card 2012],

[15] Rocha, A.V., M.M. Loranty, P.E. Hiquera, M.C. Mack, F.S. Hu, B.M. Jones, A.L. Breen, E.B. Rastetter, S.J. Goetz, and G.R. Shaver. 2012. The footprint of Alaskan tundra fires during the past half-century: implications for ecosystem function and resilience. Environmental Research Letters 7 044039 doi:10.1088/1748-9326/7/4/044039

[14] Berner, L.T., P.S.A. Beck, M.M. Loranty, Alexander, H.D, M.C. Mack, S.J. Goetz,2012 Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences 9, 3943-3959, doi:10.5194/bg-9-3943-2012, 2012

[13] Alexander, H.D, M.C. Mack, S.J. Goetz, M.M. Loranty, P.S.A. Beck, K. Earl, S. Zimov, S. Davydov, and C. Thompson 2012 Effects of stand age and tree density on carbon accumulation patterns during post-fire succession in Cajander larch (Larix cajanderi) forests. Ecosystems doi: 10.1007/s10021-012-9567-6

[12] Jin, Y., J.T. Randerson, S.J. Goetz, P.S.A. Beck, M.M. Loranty and M.L. Goulden. 2012. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research-Biogeosciences 117, G01036, doi:10.1029/2011JG001886.

[11] Mackay, D.S., B.E. Ewers, M.M. Loranty, E.L. Kruger, S. Samanta 2012. Bayesian analysis of canopy transpiration models: A new test of posterior parameter means. Journal of Hydrology 432-433: 75-83. doi:10.1016/j.jhydrol.2012.02.019

[10] Loranty, M.M., and S.J. Goetz. 2012. Shrub expansion and climate feedbacks in Arctic tundra. Environmental Research Letters. 7 015503 doi:10.1088/1748-9326/7/1/011005 (Invited Perspective Article)

[9] Beck, P.S.A., N. Horning, S. J. Goetz, M.M. Loranty, K. Tape. 2011. Shrub cover on the North Slope of Alaska: a circa 2000 baseline map. Arctic, Antarctic and Alpine Research, 43(3):355-363. doi: 10.1657/1938-4246-43.3.355

[8] Beck, P. S. A., S. J. Goetz, H. Alexander, M. C. Mack, Y. Jin, J. T. Randerson, M. M. Loranty. 2011. The effects and implications of an intensifying fire regime on boreal forest in Alaska. Global Change Biology, 17: 2853-2866,doi:10.1111/j.1365-2486.2011.02412.x

[7] Loranty, M.M., S. J. Goetz, P.S.A Beck. 2011. The effects of tundra vegetation on pan-Arctic albedo. Environmental Research Letters 6 024014 doi:10.1088/1748-9326/6/2/024014 pdf

[6] Loranty, M.M., S. J. Goetz, E. B. Rastetter, A.V. Rocha, G.R. Shaver, E.R. Humphreys, and P.M.Lafleur. 2011. Scaling an instantaneous model of tundra NEE to the Arctic landscape. Ecosystems 14(1):76-93. (Article and photograph featured on cover) pdf

[5] Loranty, M. M., D. S. Mackay, B. E. Ewers, E. Traver, and E. L. Kruger 2010, Competition for light between individual trees lowers reference canopy stomatal conductance: Results from a model. Journal of Geophysical Research – Biogeosciences 115, G04019, doi:10.1029/2010JG001377

[4] Mackay, D.S., B.E. Ewers, M.M. Loranty, E.L. Kruger. 2010. On the representativeness of plot size and location for scaling transpiration from trees to a stand. Journal of Geophysical Research – Biogeosciences., 115, G02016, doi:10.1029/2009JG001092

[3] Loranty, M.M., D.S. Mackay, B.E. Ewers, E. Traver, and E.L. Kruger. 2010. Competition for light contributes to within-species variability in stomatal conductance. Water Resources Research., 46, W05516, doi:10.1029/2009WR008125.

[2] Traver, E., Ewers, B.E., Mackay, D.S., Loranty, M.M., 2010. Tree transpiration varies spatially in response to atmospheric but not edaphic conditions. Functional Ecology, 24, 273-282.

[1] Loranty, M.M., D.S. Mackay, B.E. Ewers, J.D. Adelman, E.L. Kruger. 2008. Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient. Water Resources Research, 44, W02441, doi:10.1029/2007WR006272.